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The behaviour of a 
laminar compressible boundary layer on a cold wall 

near a point of zero skin friction 
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Mathematics Department, New York University, University Heights, N.Y. 

(Received 16 February 1970) 

It is shown that the expansion assumed by Stewartson to  describe the flow close 
to separation in a compressible boundary layer is incomplete. When the wall 
is cold an infinity of new terms involving log 6,  log log k and their products and 
quotients must be added at  each algebraic stage. The skin friction then vanishes 
like xi lnx where x is the distance to separation. None of the coefficients of the 
logarithmic terms are arbitrary and in particular the first two terms in the 
expansion of the skin friction are known if the heat transfer is given at separation. 
Convergence is so slow, however, that this is of no practical value. 

1. Introduction 
The behaviour of an incompressible boundary layer at  a point of zero skin 

friction has been firmly established by the work of Goldstein (1948), Stewartson 
(1958) and Terrill(l960). The skin friction vanishes like xi where x is the distance 
to separation, and the structure close to  the wall is described by a series in powers 
of xfi with coefficients that are functions of 7 = y/(2x)fi. At various stages, terms 
in xin log x also have to be included, this being the fundamental contribution of 
Stewartson. There are two basic assumptions in the development of what will 
be called the Goldstein-Stewartson expansion, namely that 7 is the appropriate 
similarity variable and that the various complicated functions of 7 that are 
generated all behave algebraically when 7 is very large. 

In  the case of compressible flow the matter is less satisfactory, since Stewartson 
(1962), using the same approach as his 1958 paper, was unable to find anything 
but a regular expansion at  separation when the heat-transfer is non-zero. This 
result was not contradicted by the best numerical work of the time, but recent 
numerical work of Merkin (1969) for a cold wall shows singular behaviour difficult 
to distinguish numerically from the square root. P. G. Williams of University 
College, London, informs me that he also has found singular behaviour for both 
hot and cold walls. 

In  this paper Stewart son’s approach is re-examined in an attempt to  resolve 
this contradiction between the analysis and the numerical work. Apparently 
a self-consistent expansion can be found, valid for a cold wall, if additional 
terms involving log log are permitted. 
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The equations to be studied are (Stewartson 1962) 

with boundary conditions 

In addition it is required that neither of the dependent variables diverge ex- 
ponentially for large 7. 

Here, 5 = ( - X/Z)k, 7 = (Re)t(Z/ - 4X)k Y, 
7b = 28( - X / V K  71, = to  + (1 + to )  dt-, 71, 

where X is the distance to separation, Y measures distance from the wall, @ is 
the stream function and S is related to the absolute temperature. 1 is a charac- 
teristic length obtained from the pressure gradient and to is the value of S at 
the separation point. 

A solution t o  equations (l.l), (1.2) is sought in the form 
m 

f(5, 7) = X fn(77 5) 6, (1.4) 
n=O 

m 

dt, 7) = X gn(rI, 8 En, 
n=O 

where the dependence of thefn, g, is logarithmic. More precisely 

and similarly for the g,. Consider now the derivative of (1.4), 

which we write as 

89 O0 

ak- n = O  
and similarly E- = z G , S .  

Equations (1.4)-(1.7) can be substituted into (l.l), (1.2) and the coefficients of 
powers of tequatedasif the f,, gn, F,, G, were independent. With the algebraic 
balance established and an infinite number of equations generated, one for 
each of the f,, g, we can then consider the 'logarithmic' expansion of each of 
these equations. The algebraic balance when .n $: 0 leads to 
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f ," - 3fo.f; + - 3fbf, -f;F, + 4fb.f; f f AFb -.f:po 
71-1 W 

m = l  m=O 
= c [3f,f~,-f~F~,+f~F,,-2f~f~-l+4,+ CI 9mPyn.,,, (1.9) 

where the 8 are non-zero only for i a non-negative integer. The primes in equa- 
tions (1.8), (1.9) denote derivatives with respect to 7. 

If fo and go are assumed to be [ independent they satisfy 

9," - 3fOd  = 0, 

f{ - 3f0 f ; -k f;f = 1 + 90 
(1.10) 

(1.11) 

and Stewartson (1962) has given arguments from which it may be concluded 
that the appropriate solutions are 

9, = 0, fo = 373. (1.12) 

The leading term in the temperature expansion is a constant and the velocity 
is parallel to  the wall with a parabolic distribution. 

2. Stewartson's analysis 

are 6 independent. Then, 
Stewartson (1962) proceeded with the expansion by supposing that fl, g, 

(2.1) 9; - -h39sl + QT291 = 0, 

(2.2) 

with solutions gl = B17, f1= a172++~B174. (2.3) 

- $7'9; + = 2alB17'. (2.4) 

ft - Q73fg + 37y; - 57f2 = - 4 4 7 2  + &al Bl 7 4  + g2. (2.5) 

Equation (2.4) has solution g, = 2a1B,(1 -&), (2.6) 

1 3 "  5 2 '  f? - z7 f 1  +ZT f 1 - 47.L = = g1, 

Continuing in like manner 

where & is the complementary function that equals one at the wall and is 
algebraic at  infinity. There is such a function. The equation for f,, on the other 
hand, presents a difficulty since an acceptable solution can only be found if 

The 72 term does not contribute to this integral since q5 is an appropriate par- 
ticular integral for this term. Thus (2.7) is only satisfied if 

alB1 = 0. (2.8) 

Numerical evidence (e.g. Merkin 1969) suggests that the heat transfer does not 
vanish (i.e. B, =t= 0) and although the expansion can be continued with the 
choice a, = 0, the solution is then regular at  separation, which possibility we 
reject (at least for a cold wall). Stewartson attempted to avoid the conclusion 
(2.8) by a device that in his 1958 paper successfully resolved a similar difficulty 
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that Goldstein (1948) had encountered. Thus he wrote 

fl =f101nE+f11, 91 = 91. (2.9) 

g, cannot be modified since this would ultimately lead to an inhomogeneous 
equation of the type (2.1); this equation would only have a solution if the in- 
homogenity satisfied an integral condition, and we would then conclude that in 
fact the inhomogenity vanished. Stewartson quite rightly concluded that (2.9) 
would noti work but he omits the details. They are instructive however. 

g, is still given by (2.3); flo satisfies the homogeneous equation forfl so that 

fio = a10y2 (2.10) 

andf,, satisfies (2.2) (although E8fl/8[ = flo, the simple solution (2.10) does not 
contribute to fll) whence (2.11) f1i = ally2 + &B1r4. 
The logarithmic term in fl induces logarithmic terms in f2, g,. Thus 

92 = 920 1n t + 921, 

gil - Br39L + r2921 = 2al1Blq2 + B1a10r282. 

where gao = 2aioBi(1-82) 

and 

The solution for g2, is 

921 = 2B,a,,(l- g2)  - ___ B1a10 h (2.12) 2 .sar(t)  2 ( ~ ) ,  

where 

Three terms are needed to describe f2  

where 

f 2  =f201n25+f211nt+f?.z, 
f - a 7 2 - 2 L a 2  75, 

20 - 20 1 5  10 (2.13) 

This result is underlined since it is not discarded in the sequel. It relates the 
leading term in the skin friction to the heat transfer at  separation. Now alo 
must be negative since the skin friction is positive just prior to separation. 
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Equation (2.16) can only be correct then if B, > 0 so that the temperature is 
increasing away from the wall. Henceforth the analysis will be restricted to this 
cold-wall case. 

It might be thought that the integral restraint implied by (2.15) would establish 
a relation between a,, and a,,. However, because 

f 21 - --2. , 5~10al175 + terms independent of a,, 
we have 

= terms independent of a,, (2.17) 

and the left side of this equation vanishes because of the choice of a,,. Equation 
(2.17) then establishes another relation between a,, and B, that is not consistent 
with (2.16). Because of this, Stewartson concluded that (2.8) is correct. 

3. The modified expansion 
In  this section it is shown how the difficulty of (5 2 can be avoided by permitting 

additional terms in the expansion. Before doing this, however, i t  is worth 
mentioning that the author’s original approach to  this problem was not to seek 
a Goldstein-Stewartson expansion, but rather to treat the problem as a para- 
meter perturbation following Kaplun’s ( 1967) analysis of the incompressible 
case. In  this approach perturbations to (1.12) are sought without any assumptions 
about the structure. This leads to  partial differential equations and an eigen- 
function which satisfies a certain non-linear integral equation with an Abel 
kernel. In  order to determine the behaviour of the skin-friction at  separation 
it is then necessary to find a local expansion for the eigenfunction. One such 
expansion was found, valid for a cold wall, and it is that expansion which we 
describe here, although in a different form. Although the needed terms were 
discovered in this fashion, an argument can be given within the present frame- 
work, as follows. 

If we take the point of view that f,, is correct since the contradiction arose at 
the O( 1) stage in fz, then we must seek an additional term, somewhat larger than 
f,,. This term must provide an additional inhomogeneity in the equation for fzz. 
Now in addition to other terms the equation for fz contains 

so that if we choose a term that satisfies 

(3.1) 

i.e. an O(lnln6) term, then the equation for fzz is changed. However (3.1) pro- 
vides an 0(r2) term which is not good enough but fortunately an O(ln6lnlnE) 
term is added to fz and it is the 6 derivative of this that resolves the difficulty. 

16 F L M  44 
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Equation (2.9) is now replaced by 

fl = f1oln 5+f121nln E+fll.t (3.2) 

f i 2  = a12r2* (3.3) 

fi0 andf,, are still given by (2.10), (2.11), and 

Equation (3.2) is then an exact solution of the equation for fl. 
The In In 6 term complicates the expansion considerably since the sequence 

generated from this by applying successively the operator [a/a[ does not ter- 
minate. Consequently the expansions of g2 and f2 no longer terminate. Thus 

(3.4) 
(3.2) implies 

where g2,, g,, are unchanged and 

g22 = 24a12(1-i72)- (3.5) 

g, = g,,ln5+g,,ln1n'5+g,,+ ... 7 

The expansion for f2 must start in the form 

fz = f201n2~+f231n51n1nE+f211n~+f24(1n1nE)2+f251n1n5 

f2, is still described by (2.13); f23 satisfies the equation 

1 3 "  .fg - %r f 23 37%- %f23 = - 8aioaiar2, 

so that f 2 3  = ~ 2 3 ~ ~ - ? 5 a l o a 1 2 ~ ~ .  (3.7) 

f 2 1 =  aaiy2 - +~a10a117~ + F z i ( a i o ,  B;  T ) ,  (3.8) 

f 2 ,  satisfies (2.14) and we write its solution in the form 

where 321 is the particular integral generated by 

- 2 4 0  r2 + QB1 a10 r4 + r6 + 2 4  1 - &) . 
fad satisfies a simple equation and has solution 

f 2 4  = a2472-&a%275. 

The next term is f 2 5  which is described by 

f2- 87"fL5+ 37?fk5- %fa5 = - 8 ~ l l ~ l a r 2 -  2al0cc,,r2 

+ 2B1~12( 1 - g2) + -5B,(~,,7~ + ~ 1 2 7 ~ .  (3.10) 

The phenomenon of (2.17) appears here, the choice of a,, given by (2.16) en- 
suring that (3.10) has a solution regardless of the value of a12. 

Turning now to the O( 1) balance, which earlier gave difficulties, 

fi'A-&ff&+37?fL2- 5rlf iz  = -2a , ,a ,2~2-2a10a, ,~2-4a~,~2 

+ [%&1174+ 2&a,,(I - ~ 2 ) + ~ a 1 0 a 1 1 7 6 ] + ~ a 1 0 a 1 2 ~ 6 .  (3.11) 

t We write h l n  E as a shorthand for lnlln 61 throughout. 
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The a,, terms do not contribute to the integral restraint associated with this 
equation so that a,, is determined in terms of I?,. Thus 

aI2 = [l- 2 In 21 alo. (3.12) 

a,,, the O( - X), contribution to the skin friction, is not determined by the 
preceding analysis or anything that follows. This is not surprising since every- 
thing we have done so far should reduce to the incompressible case when B, = 0. 

The remaining difficulties with the expansion of f ,  are easily taken care of. 
Following the O( 1) balance, f26 satisfies 

f[L- *7”f6 f 377&.- 57f26 = - 2a:27’ + &“:2T6 (3.13) 

and this equation only has a solution when 

a12 = 0. 

To avoid this conclusion another term must be added to  f,. This has to  be an 
O(ln In t/ln 6 )  term. Similarly, the equation for f 2 , ,  the coefficient of the O( 1/1n 5) 
term in the expansion of f,, only has a solution if an O( l / lnt )  term is added tof,. 
Now these additional terms imply that the expansion of f, must continue as 

(InIn()2 lnlnc 
f 2  = a * . +  f 2 9  ln2E + f 2 l O l n 2 5  + * * .  

and like terms must be added to f, and so on. 
In  order to provide reassurance that everything works out properly let us 

consider the precise effects of the next two terms inf,. Equation (3.2) is replaced 

and to (3.4) must be added the additional terms 

f13, like all theflj terms other than fll, is simply 

f 1 3  = a1372> (3.15) 

so that g24 = 2B1cc13(1 - 9 2 ) .  (3.16) 

f13 effects not only the equation fort,, but also some of the earlier ones, but 
fortunately in a way that does not interfere with the integral restraints. Thus a 
term - 8 ~ ~ 1 o a 1 3 7 ~  must be added to the right side of equation (3.10) for,fZf. Also 
a new term (In In c), 

f28 

is generated, satisfying 

f{;-&”f”&+ 37?&-55rf28 = - 8 ~ , , ~ 1 3 7 ~ ,  (3.17) 

but most important of all, the equation for fa6 becomes 
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whence (3.19) 

Continuing, f 1 4  = %4Y2 (3.20) 

and (3.21) 

so that - 8a,0a1472 must be added to the equation for f22; - 8 ~ 1 2 a 1 4 7 ~  to (3.18); 
and f 2 7  satisfies 

1 3 " fl ' :-Z7 f 2 7  f 3$%37- 57f~7 = - 2a11a1272- 2a10a1372- 8a11a1472 

f g23+$Biai274 f &B1a1474- 87?&+7f25. (3.22) 

L 

P I I I I I 1 1 1 1  I I I I I l l 1 1  I I I I 1 1 1 1  

x, -x  
FIGURE 1. Heat transfer and skin-friction close to separation. 0, heat transfer from Merkin 

r10-6, 10-31 x [lo-3, 10-11; v, skin friction from Merkin [10-6, 10-31 x 

a14 is now defined. It is related not only to  B, but also to a,,, the other arbitrary 
constant at this stage. We could continue indefinitely. All of the constants alj 
are related to B,, all and since none of this structure is needed for the incom- 
pressible problem they must all vanish when B, = 0. Our knowledge of the skin 
friction close to  separation is therefore very rich with the f i s t  infinite number 
of terms containing only two arbitrary constants. Unfortunately, successive 
terms in (3.14) decrease so slowly that this knowledge is of little value. Numerical 
work will merely show the skin-friction behaving approximately like ( - X)*. 
This conclusion is in agreement with what appears to be the only published 
accurate numerical integration of the compressible boundary-layer equations t o  
separation (previous computations have not been close enough, apparently). 
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This is the work of Merkin (1969) who considered a convection problem with 
flow over a vertical plate. His equations are very similar to (1.1), (1.2) and his 
results show singular behaviour. In  figure 1 the skin friction and heat transfer 
are shown on a log-log plot and it is clear that both behave approximately like 
( - X)*. Note that Merkin's tabulated results appear to be in error for points very 
close to separation. 

4. Higher-order terms 
The solution to second order is not completely determined by the analysis of 

$ 3  since the infinite set of constants a2, are presently undefined. They are de- 
termined by an examination of the third-order solution. The terms on the right 
of equations (1 3) imply that the third-order solution must be of the form 

g3 = g30 ln2 5 + 93, In 51nln 5 + 93, In 5 +  g33(lnln5)2 + . . ., 
f3 = f301n3 5 + f 3 i  ln2 51nln t + f 3 2  In2 5 +  f3,h [(lnln 5)2 + . . . . 

(4.1) 

(44 

Appropriate solutions for the g3j can be found without any difficulty in principle 
but each of the equations for f 3 i  leads to an integral condition that determines 
one of the a2+ It is to  be expected that all the aZi can be found in this way since 
there is no arbitrariness at  this stage in the incompressible problem. The leading 
term for the temperature satisfies 

g&-tq3gio+$q2g30 = 3Bia207~- sB,a;oq2gi- 8B,a;o7(1-82), (4.3) 

where a20 is determined from the equation for f 30, 

f& - &/?3J@;o + 1 27 2f' 30- 67f30 = - 10a1oa20q2 - +i075. (4.4) 

No algebraic particular integral with a double zero can account for the q2 term 
so that a20 is determined by the requirement that fz0 has the appropriate be- 
haviour, and furthermore aaO is non-zero. Since the equation for f3, always con- 
tains a term proportional to aloa2jq2 it seems probable that all the aa can be 
found in this manner. Since in general gj, does not vanish on the wall, this means 
that Che first infinity of corrections to the heat transfer B, depend only on B, 
and all. Numerical computations for a cold wall should show the heat transfer 
approaching its limiting value like ( -  X ) & .  The results of Merkin (1969) men- 
tioned earlier confirm this, and are shown in figure 1. 

Every f3j calculated a t  the third order is arbitrary to the extent of a term 

a3, r2 
and the 0 ~ 3 ~  have to be found from a study of f4. Again, a lack of arbitrariness in 
the third-order incompressible solution implies that all the aQi are determined. 
Now 

9, = g4,1n35+ ..., 
where 

dO-h3gk+ 'q2g40 = 6B1f30-B17fi0+ 5f10giO+ 5f20giO- 3f;~g30- 2fi0g20 (4*5) 

and f4 = f401n4[+..., 
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where 

f& - +?%o + 47%0 - 7 ~ f ~ ~  = 4flof& + 6f30.fi0 - ? f lo f& + 5fzof 'h - 4f3 
= - 12a10a,0y2+ .... (4.6) 

Pl and 8, both contribute to the fourth-order solution but this does not complicate 
matters. 

The pattern is changed when we turn to g, and f5 in order to find the ~ 1 ~ ~ .  

The reason for this is that an integral restraint is now associated with each of the 
g,, as well as the f53. Stewartson (1962) has pointed out that this occurs whenever 
n = 4r + 1 (r an integer) since the complementary function that is algebraic 
at infinity vanishes at the wall for these n. The source of the difficulty provides 
the resolution since we can add an arbitrary multiple of (7 - &q5) to each g,, 
and this arbitrariness can be used to satisfy the additional restraints. Thus we 
are naturally led to starb the expansion for g5 with 

9, = g,,ln4[+ ..., 
where 

gS0 - + b%50 = 4f10gk3 + 5f20do + 6fa0d0 + 7Blf40 

-4fiogao- 3 f ~ o g 3 0 - 2 ~ ~ 0 g 2 0 - ~ ~ 7 ~ ~ o ,  (4.7) 

but equation (4.7) does not have an appropriate solution (the a,j are to be re- 
served for the solution off, of course). However the equation for g5 contains the 
term +qz[ag5/8[ so that if we write 

9, = g511n5[+g501n4~+..., 

and this adds 8 term - iBiii(7' - ib') 
to the right of (4.7). B,, is then determined by the integral restraint associated 
with (4.7). Terms of order ln4 [ln In [ and In3 C(ln1n [ ) z  also have to be deliberately 
introduced into g, but the rest of the terms needed appear in a natural way. For 
example, solution at the O(ln3[) level is assured by the arbitrariness of g50. All 
the constants B, are determined except the one that is introduced at  the O(1) 
level, since [a/a[(l) = 0. We will call this constant B, and it joins B, and all 
as an unknown. This difficulty with g, does not affect f,. The reason for this is 
that the three extra orders added tog, do not add extra orders to f,-those orders 
are already present. Thus the one-to-oneness between the a4, and the f,, is not 
disturbed and all the a4i are determined. 

The leading term in the expansion of f, is 

f50 ln5 [> 
where 

1 3 " fg- U7 f 5 0 + @ f f ~ O - s 8 r f 5 0  = B51(7-i%75)- 14a10a4072+ 5 ! Z O f &  

+ 6f30f1i0- 9fLfj0. (4.9) 

B,, is of course already related to a40 by the restraint associated with (4.7).  
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Turning to f 6 ,  more complications arise. This is because the equation 

ft - try: + 57y; - 9?jf6 = 72 

has a solution f6 = e’,(75-&79), 

so that, as with fi, 72 terms do not contribute to the integral restraints associated 
with thef6j. Consequently it is no longer clear that the necessary degree of 
arbitrariness occurs at each stage via the a,*. Indeed with 

fs = f601n65+ ..., 
the equation for f s 0  is not solvable. Additional terms have to be added on to f5 
to resolve these difficulties, the first one being O(ln65). We can expect that all 
the 01~~’s will be determined except for the O( 1) coefficient since this is arbitrary 
when B, = 0 (Stewartson 1962, p. 125). It is possible that what happens is 
similar to what happened with fa when a,, was undetermined, and a new infinite 
sequence of terms has to be added distinct from the extant mixture of logs and 
log-logs, but the details have not been checked. With a fourfold infinity of 
terms for the skin friction calculated in principle, and results obtained consistent 
with the numerical evidence, it does not seem very likely that an insuperable 
difficulty could arise in the expansion. 

The hot wall case has not been discussed. The evidence is that the behaviour is 
singular for this problem also, but certainly the expansion generated here is not 
appropriate. The best hope of a resolution seems to this author to be a study of 
the integral equation that arose in the analysis mentioned at  the beginning of 3 3. 

This work was started while the author was a temporary lecturer in the 
Mathematics Department, University College, London. Professor Stewartson’s 
kind hospitality during this period is gratefully acknowledged. The work was 
completed at M.Y.U. under contract AFOSR 67-1062 from the Air Force Office 
of Scientific Research. 
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